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EQUILIBRIUM AND STABILITY OF AN INCOMPRESSIBLE
FLUID DROP

V. R. Orel UDC 532.5

Equilibrium shapes and stability of axially symmetric drops were investigated in detail in [1-3]. The
papers [4-8] were devoted to conditions of drop breakup following slow growth. Based on the results of {61, a
mechanism was suggested [7] for determining the surface-tension coefficient of the fluid by the height of the
drop at the moment of break-up. Below we consider equilibrium and stability of an axially symmetric drop,
adjacent to a bulk incompressible fluid and bounded by a planar free surface. Unlike [1-7], in studying the sta-
bility of this system [8] it is necessary to take into account perturbations varying the volume of the drop.
Therefore the class of stable equilibrium shapes is narrowed down.

1. Let some volume Q of an incompressible fluid be in a uniform field of mass forces and be confined by
solid walls of a container 8§ and by free surfaces = and £4. The surface X, is planar, and T confines that part
of the volume, protruding in the form of a drop at the outer surface of the container walls,. We assume that the
wall surface near the contour L is the base of the drop and the wetting characteristic of this part of the wall is
axially symmetric, while the symmetry axis is parallel to the direction of the gravity field g, We assume that
the drop is also axially symmetric., The contour radius of the drop base is denoted by Ry, and the drop height
by H. We introduce a cylindrical coordinate system {r, z, g} with origin at the center of the drop base and a
Z axis along the symmetry axis inside the volume Q (Fig. 1). The coordinates r and z are dimensionless:
r=R/R, z=Z/R,.

We denote by s the path length measured from the plane of the drop along the meridian. The meridian
coordinates are given parametrically

r=r(s), z=12@s), 0<s 1,

where 1 is the total length of the drop meridian.

The functioﬁs r(s), z(s) satisfy the well-known [1] system of ordinary differential equations

(s = —2'(s)gls, B, wha's) = r'(shg(s, B, M) (L.1)
g(s, B. m) = Bals) --n — 2/(s)/r{s)
and the boundary conditions (—h is the ordinate of the pole of the drop)
(L.2)

r0) = 0, 2(0) = —h, r(l) =1, z(l) = 0.

The dimensionless parameters g8, nof the system (1.1) are
p = pgRi/o, n=PpoRdo, (1.3)

where p is the fluid density, g is the acceleration projection of the gravity force g on the Z axis, ¢ is the sur-
face-tension coefficient of the drop, and py is the pressure at the base plane of the drop (z=0).
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For fixed values of h and 5 the determination of drop equilibrium shapes reduces to searching parameter
values B=pB(h, 7, for which the corresponding triplet of numbers {h, 7, B} obtained is an integral curve of sys-
tem (1.1), starting from the point (0, —h) of the plane (r, z) without leaving the half-plane{z <0}, and coinciding
at the point (1, 0). The calculation of the parameter § is carried out by an iteration method, at each step of
which the system (1.1) is integrated numerically in the parameter s from s=0 to s =], so that z{{)=0. The
iteration leads (with some given accuracy) to the equality r(1) =1.

It must be noted that the boundary condition r(0) =0 (1.2) creates some difficulties in a numerical solution
of Eq. (1.1) near the point s =0, since r(s) appears in the denominator of the function g(s, 8, n). By direct
expansion of the indicated features of problem (1.1), (1.2) we find the following conditions of finiteness of solu~
tion at s=0:

F(0) =1, 7 (0) = Z(0) = 0, 27(0) = (n — Bh)/2. (1.4)

Relations (1.4) make it possible to perform the first step at the point s =0 by numerical integration of
system (1.1) by the Runge-Kutta method without resorting to power expansions [1].
We also note that for arbitrary h the parameters
f =0, n=4n/(1 A% (1.5)
correspond to the following exact solution of problem (1.1), (1.2):

el 2h
r(s) =g s TE S (1.6)

1=kt 44k 2h

. 1—h2
z2(s) = — o CO% IR

1 A2

1—n
s, O0Csg ——arceos

This can be verified by direct substitution of the function (1.6) with account of (1.5) into Egs. (1.1) and
boundary conditions (1.2). The solution (1.6) determines an arc of radius (1+h? A2h, forming a spherical seg-
ment whose shape the drop would acquire under conditions of zero gravity.

For given h>0 and values of ;) differing from (1.5), the parameter § corresponding to the solution of
problem (1.1), (1.2) is determined by the iteration scheme suggested above. The dependence B(h, n) of the
parameter  on  was calculated numerically on a computer for various fixed values of the parameter h,
Figure 2 shows the curves of 8(h, n) for the values h=0.1, 0.5, 1, 2.5 (the lines 1-4, respectively). The func-
tions B(h, n) increase monotonically with 5, passing through zero, according to (1.5}, at = 4h/(1+h%. In the
region 0 < 5 <2 the dependence 3 =5(h, n) is nearly linear for fixed h. The line §=5(0, n) corresponding to h=0
is, obviously, the S-axis, since for arbitrary p and =0 the necessary conditions (1.1) for an equilibrium
planar surface {z=0} are satisfied identically.

The behavior of integral curves of equations of type (1.1) and the corresponding drop shapes were investi-
gated in detail and illustrated in [1-3]. Not providing the shapes of the drop meridians, which are fully con-
sidered in [1-3], we note that for a given choice of dimensionless units drops with smaller 5 are, for arbitrary
h> 0, fully contained inside drops with larger values of the parameter 7.

2, Todeterminethe stability of a given dropequilibrium shape we use the approach of [8]. We assume that
the container walls S near the contour L, of the free surface I, are vertical, and the corresponding edge angle
is 90°, i.e., the surface 3, is planar. Let (x, y) be Cartesian coordinates in the 3, plane. The probiem (1.6) of
[8] in the perturbation u(x, y) of the surface £, acquires then the form

?u  uy ) ST {2.1)
—oy (244 28 =hu(a ), (e p) = S|, =0

where ¢, is the surface tension coefficient of £y, and n is the normal to the contour I, in the z; plane.
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Obviously, the function uy(x, y)=1 is a solution of problem (2.1), corresponding to the eigenvalue A3=0.
Since the operator of problem (2.1) is self-adjoint, it follows [9] that the remaining eigenfuctions U (x, y) k=
1, 2, ...) of this problem satisfy the condition

‘ UGl dZ; = ( u,dZy = 0. (2.2)

According to [9], however, the operator of problem (2.1) with isoperimetric bound (2.2) is positively
definite. Consequently, Ay=0 is the smallest eigenvalue of problem (2.1).

We denote by 14, g, ... the ordered sequence of eigenvalues of problem (3.3) of [8] on the surface of the
drop for the case of axially symmetric (n=0) perturbations u(s)

—u"’(s) — r(shu'(s)r(s) — w(shuls) = hu(s), 0 <s<< 1, w'(0) =0, yu{l) i u'(l) =0, (2.3)
where 7(s) is of the form [1]
sy = Bri(s) — [s'(s)ir(s) I — #"(s)® — »"'()% 2.4)

r(s) and z(s) are the solution of problem (1.1), (1.2), and the parameter y is determined by the wettability con-
dition of the drop contour {1, 2].

Let wy be the volume of the first eigenfunction of problem (2,3). Using Eq. (2.5) of [8] for wy = 0 or case
B [8] for w; =0, and taking into account that the smallest eigenvalue of problem (2.1) vanishes, it can be shown
that the sign of the minimum second variation of the potential energy of system {z,z;} coincides with the sign
of the first eigenvalue N of problem (2.3). We note that since problem (2.3) for axially symmetric perturbations
of the surface ¥ does not have isoperimetric restrictions, it follows from inequality (8.19) of [2] that non-
axially-symmetric perturbations cannot be considered. Therefore the answer to the drop stability problem is
given by the sign only of the first eigenvalue 1 of problem (2.3).

Consider the case in which the fluid wets totally the wall surface S up fo the drop contour L. The bound-
ary condition of problem (2.3) at the point s =] acquires then the form

u(l) == 0. ' (2.5)

In the case of problem (2.3) with restriction (2.5) for the solution of the stability problem of a given
equilibrium shape it is not necessary to calculate the first eigenvalue w, of problem (2.3). It is sufficient to
integrate the differential equation of problem (2.3) for A=0 with initial conditions

w(0) =1, v () = 0.
If, then, u(s) >0 for all 0 <s =1, the equilibrium shape is stable, while if a point s*e (0, 1) is found such that
u(s*) =0, the given equilibrium shape is unstable. The stability limit is reached if u(s) >0, 0 <s <7, but u{) = 0.
These statements follow from the comparison theorem [10] for solutions of second-order linear differential
equations. i

Using the stability criterion mentioned, drop equilibrium shapes were studied for negative Bond numbers
B (1.3). For various h values calculations were performed along the curves 8(n, n) considered in Sec. 1,
Figure 3 shows the curves p*(h) and 5*(h), determining the stability limit of a drop of height h (= const). For
B< B*(h) the equilibrium shapes of a drop of given height h are unstable, while for g > g (h), h €(0,1), they are stable.
For h>1 there are no stable equilibrium shapes with negative 8 numbers. Similar statements concerning
stability for » < n*() or n > n* (), respectively, follow from the monotonicity of the curves p(h, ) (see Fig. 2).

We also note that f*(0) =—¢{, where ¢, is the first root of the Bessel function J¢(¢) [10]. This can be
shown by passing to the limits r'—1, r", z', z" —0 in expression (2.4) and Eq. (2.3).
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h h k] | h &

0,05 |1,91748{0,97450(0, 21476| 0,33524 10,55

0,10 |1,85316{0,95255|0, 36460] 0,42362 0,601, 46901|0,80704|1,05280( 0,66411
0,15 |1,79851]0,932850,48322] 0,47830 0. 651, 4416010, 79675|1,08921 0,67546
0,20 [1,75011/0,91482]0, 58234} 0,51675 0,701, 445310, 78698|1, 12265| 0,68606
0,25 |1,70618]0,898140, 66769 0,54622 0. 75/1,39004/0, 777681, 15347| 0,69598
0,30 [1,66571[0,88250{0.74244] 0.57017 [0.80[1.36572{0. 768831, 18196/ 0,70529
0,35 |1,62804|0,86804[0,80872] 0,59051 [I0)85(1,34235/0, 76042|1, 20830 0,71402
0,40 |1,59275[0,85440[0.86790] 0,60830 [0.90|1.31976{0,75237|1,23286| 0,72228
0,45 |1,55937]0,84152|0, 92113} 0,62420 0, 9511, 29807(0, 74473|4, 25569 0,73005
0,50 |1,52778/0,82939|0,96929] 0,63865 1,001, 27703|0,73740}1,27703] 0,73740

1,49774]0,81792(1,01298{ 0,65188

The calculations performed make it possible to formulate stability criteria of the system of equilibrium
surfaces {Z, Z;} and for the case B=const. We fix some number B,c (—¢}, 0) and put 7= 1* (hy), whereh, is
the root of the equation *(h) =8). For a given value of the Bond number B, any drop equilibrium shape with
dimensionless pressure 7 is then primarily stable for n<n, and unstable for 5> . At the same time the drop
height h satisfies the inequality h <h; or h>hg, respectively.

We stress that, as shown above, in passing through a critical value the system {Z, 5} loses stability of
strict axial symmetry, Therefore the problem of possibility of transition of a drop into a near non-axially-
symmet:rid equilibrium shape, considered in {1, 4] in studying evolution of an isolated drop, does not arise in
the given case. Consequently, loss of stability under the condition 8 =const is accompanied by breakup of part
of the drop, since for 5>y, there are no stable axially symmetric shapes.

3. As an example of applying the stability conditions obtained we consider a possible scheme of mea~
suring the surface-tensioncoefficient. For some pressure p at the center of the drop base with volume Q
(Sec. 1), restricted by free surfaces T and ¥, (see Fig. 1), let the drop be in a state of stable equilibrium. The
pressure p can be measured quite accurately, since it is determined by the distance between the drop base and
the planar surface £,. If the apparatus on which the drop contour is fixed is quasistatically displaced vertically
downward, the pressure p in the drop base will increase. We assume that the area of the surface 3; and the
volume of the fluid underneath it exceed significantly the area of the drop base and its volume. After achieving
some critical pressure pg, part of the drop is then torn, but the level of the surface ¥, is practically unchanged,
and therefore the break-up pressure p; can also be measured with the required accuracy.

The experiment described is performed at a fixed value of the parameter 8,. Using expression (1.3), we
form the new dimensionless parameter

o = By/my = pgRy/Po (3.1

The parameter « (3.1) is independent of the surface-tension coefficient ¢ and is calculated directly from
the experimental results. Since (Sec. 2) By=pB*(hy), ny=1n*(hy), it follows from Fig. 3 that the parameter w(<0)
increases monotonically on the interval 0 <h=1. Therefore, along with the dependences S*(h), n*(h) one can
construct the functions f*(a), n*(ar), —« < < 0, also determining the stability limit. Having, then, a graphical
or tabular dependence of n*(a), by means of (1.3), (3.1) one can then find the coefficient

o = poRym*(a).
Table 1 provides the quantities n, h, corresponding to some values of the parameters [a] and |a]™.

We note that the method described in [7] also leads to a series of results of determining the surface-ten-
sion coefficient by means of an approach based on the stability conditions of axially symmetric incompressible
fluid drops obtained in [6]. The stability conditions of [6] were found within an exact statement of the problem,
and are equivalent to the stability conditions of an isolated axially symmetric drop, derived in [1, 2]. By the
method of [7] it is necessary to measure the drop height at the moment directly preceding its breakup for
quasistatic extrusion from the aperture of a known radius.

A quite complete list of references is also given in [7], related to measurements of the surface~tension
coefficient by static methods. The authors of [7] believe that the advantages of their approach over the earlier
methods are, in particular, the following: the use of exact stability conditions relating the parameters of the
problem with drop heights measured in the experiment and with the unknown coefficient, the possibility of mea-
suring the coefficient o by the given method at the boundary between two fluids, and the possibility of measuring
o for a high-temperature fluid, when the drop height can be measured by the same optical methods, but from a
larger distance.
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The experimental scheme considered above, based on the stability conditions obtained in Sec. 2 within an
exact formulation, possesses the same range of applicability as the method of [7]. We only note in addition that
the critical pressure in the scheme suggested can, in principle, be measured more reliably than drop height
at the moment preceding breakup..

The author is grateful to F. L. Chernous'kii for his interest in this work.
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CHARACTERISTICS IN THE INITIAL STAGE OF THE SPREADING
OF A DROP ON A SOLID SURFACE

S. V. Stebnovskii UDC 532.529.6

A study of the process of the spreading of a drop on a solid surface has been the subject of many investi-
gations (see, e.g., [1, 2]). In all of these investigations the process of spreading was considered from the
instant of time when the drop could already be regarded as a liguid body, having the form of a spherical seg-
ment with an angle of wetting on the order of 90°. However, for a precise formulation of the problem con-
cerning the spreading of a spherical drop it is necessary to have some idea of how the boundary of wetting
behaves from the instant the drop makes contact with the solid surface. This is the problem we address in the
present paper.

To study the initial stage in the spreading of a spherical drop on a solid plane surface we employed the
experimental setup shown in Fig. 1. The principle involved here is the following. When air is admitted into
the pipette 1 a spherical drop 2 is formed; upon separating from the pipette, the drop acquires the requisite
speed ug and falls onto the plane surface 3. But before striking the surface it intersects a light ray in the opti-
cal system consisting of the light source 4 and the photocell 5; consequently, after a requisite time delay, the
device 10 energizes the high-voltage RC-oscillator 9, which furnishes a series of high-voltage pulses to the
hydrogen flashtube 6. Periodic flashes of light from the latter pass through the shadowgraph 7 in whose field
of view the drop appears, spreads out on the solid surface, a recording of which is made by the photoregister 8
(a transparent rotating drum with a film). Thus, the process to be studied is recorded frame by frame. More-
over, with the aid of the two mirrors 11 (see Fig. 1a), a record is obtained of the spreading of the drop 2 on
the transparent plate surface 3, in two projections simultaneously: from the side (rays a—a) and from below
(rays b—b).
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